
PASSIVE COMPONENTS 1. A voltage divider with 2 resistors has a 5 kiloohm resistor "on top" and a 10 kiloohm resistor "on bottom". The supply voltage is 10V.
2. Two inductors are wired in parallel. One has a value of 50 microHenries and the other has a value of 20 microHenries. What is the overall equivalent inductance of the parallel circuit?
3. Why are capacitors often found between the power bus supply line and the ground line?
4. Refer to Slide 13 from the Introduction to Electronics Slide package. This shows the voltage response of an RC circuit as drawn. If the capacitor starts in a discharged state such that Vc = 0V and then you close the switch, the voltage value of Vc grows exponentially as shown, until it reaches the value of the input voltage Vb (which is 1 volt for the example in the slide). The speed of growth depends on the values of R and C. One way to exploit this feature is to use this as the basis of a timer. When you want to start timing, you close the switch. Then you use a circuit like a comparator on Slide 23 to compare Vc with a reference voltage; the reference voltage might be created by a voltage divider as shown on Slide 11. For example, you might have a reference voltage that is ~0.63*Vb, which means that Vc would surpass that point after one time constant. One time constant is R*C seconds. a) OK, given all of that, let's assume we want to build exactly this type of timer such that it hits its timer value at a time of R*C (believe it or not, the units of ohms * farads = seconds). Let's assume you want to set the timer for 5 sec and you are using a Capacitor of 100 microFarads. What value of a resistor R should you select?
b) OK, now you're going to use the same circuit as a lowpass filter such as that shown on Slide 14. Now, you want to select a new resistor R such that the RC circuit passes signals with a frequency less than 100 rad/sec but filters out frequencies above this level. 100 rad/sec would be considered to be the "cutoff frequency." Assuming you are stuck with the same 100 microFarad capacitor but that you can choose any Resistor value, what value should you select for the resistor?
c) Slide 14 shows the frequency response of the RC circuit pictured on Slide 13. If you switch the locations of the resistor and capacitor in that circuit, the circuit becomes a "high pass filter" instead of a "low pass filter." The cutoff frequency is still 1/RC, but now this is the frequency below which signals are attenuated and above which are passed with little to no attenuation. Estimate what you think the resulting Amplitude Response for this filter would be with a simple sketch. The Amplitude Response is the top portion of the graph shown on Slide 14. A hand sketch is fine, but be sure to draw it approximately to scale, and label the axes.
5. The RLC circuit shown below has a transfer function of Vo/Vi = (s) / (Ls^{2} + Rs + 1/C). For this problem, assume that L=R=1 and C=1/400. Use Simulink to create a simple model of this system using the transfer function block  see below. Use a sine wave for the input, and use a scope to show a dual plot of both the input as well as the output of the transfer function. The snapshot of your model might look something like this (you need to figure out what the transfer function is):
Comment on the results in terms of the filter's affect on amplitude and phase.
EXAMPLE CIRCUIT 6. The figure below shows the schematic of a simple thermostat circuit. The purpose of this problem is to understand the functions that each portion of the circuit plays  you are not being asked to perform any quantitative circuit analysis. Thermostats are common in spacecraft; in addition, this circuit demonstrates a nice level of functional decomposition that is also common in spacecraft. RT is a thermister (a resistor whose resistance depends on temperature  it is the sensor or transducer in this problem), and V+ is the supply voltage; the values of the other resisters are unimportant to answering the questions below. For those of you unfamiliar with the functionality of a basic thermostat, the temperature is compared with some reference (a temperature setpoint, or a quantity representing one). If the temperature falls below the reference, then a control signal causes a heater to be turned on. By looking at the circuit, match each portion of the circuit  A through E  with one of the stated functional roles listed here:
ANALOG & DIGITAL CIRCUITRY 7. Short Answer & Computation a) Give an example of a value in the world that is continuous and would naturally be represented by an analog voltage. b) Give an example of a value in the world that is binary and would naturally be represented by a discrete voltage levels. c) Convert the decimal number 22 into a standard binary representation, a standard octal representation, and also a standard hex representation: d) Convert the standard binary number 01010101 into a decimal number:
8. The digital circuit below is an example of an encoder. This particular encoder is often used when there is an assumption that one and only one of 4 binary input lines reads 1 (with the rest reading 0). Given this, the encoder outputs two bits that together represent a single binary number.
c. In doing this problem, we assumed that one and only one line was high at any given time. What would happen if no lines were high or if more than one line was high at the same time? What could be done with respect to the design of the circuit to explicitly address such a possibility?
COMPUTERS / MICROCONTROLLERS 9. Short Answer a) A "Controller" consists of 3 very specific components along with a bunch of miscellaneous components. What are the 3 main components of a controller? b) It is quite possible to "compute" using a variety of technical approaches, such as using analog circuits (a.k.a. analog computers built from opamps circuits, which can add, subtract, multiple, divide, integrate, etc.), digital circuitry (from which you can build complex state machines and reasoning systems), and of course computers. Noncomputer approaches like analog circuits and digital state machines are generally MUCH faster, less power, smaller, and so on. Given this, what is the primary rationale for using fullblown computers when simpler computational approaches can meet desired computing tasks. I'm looking for one very specific benefit/advantage of using conventional computers  This point was made several times during the lecture. c) For each of the following computing acronyms, define the acronym and provide a simple 12 sentence description of what it is and does: i. SPI:ii. I^{2}C: iii. EEPROM: iv. ALU: v. RAM:

