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Structures – Supplemental Notes

 Following Slides Derive Beam Bending Formulas Used in Hmwk, Tests
– Blue boxes: formulas you will apply
– Dashed blue boxes: intermediate results that will be applied later
– Unboxed: steps you are not responsible for in this class

 General Results are Applied to a Canonical Cantilever Beam

 Final Slide Clarifies Symbols for Directions vs Deformations
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Beam Bending – Strain Geometry

For any way a beam is being bent, for 
any number of external forces (P) …

You can examine a small slice of it and 
make basic geometric observations

P
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• There is an instantaneous radius of curvature (R)
• Initially, the slice has the same length everywhere
• After it deforms, the slice has the same length only at 

the center (the neutral axis).  Above and below it 
becomes longer and shorter.

• Mathematically, we can find strain (ε) as a function of 
position in the beam (y) and radius of curvature (R).
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Beam Bending – More Geometry
• Terrific, but knowing R at a particular 

point isn’t a good way of describing the 
deformed beam shape.

• Instead we want to know the 
deformation v in the y direction as a 
function of x position on the beam.

With math tricks that you don’t need to 
know for this class, you can relate v to R
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• From the length of a circle segment we can get

• The slope of the neutral axis can be described and 
manipulated to get  
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• Finally, assuming differentially small lengths…
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Beam Bending – Stress and Forces
• If there is stress (σ) acting in the cross-

section, it causes a moment around the 
neutral axis of the beam

• The integral of the moment from stress 
over the whole area of the cross-section is 
the total moment acting at the x location 
where the cross-section was sliced 
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d = distance of force from axis 
beam is bending around

A = Area over which stress acts

Using our previous results we relate moment and beam deflection (v)

• Stress/Strain relationship

• Strain from curved geometry
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• Deflection geometry

• Constants out of the integral

• Define moment of inertia ∫=
A

dAyI 2

Eεσ =

R
y

=ε

2

21
dx

vd
R

−=

And we can manipulate this 
to yield 

I
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A very useful way of assessing 
stress if we know the internal 
moment of the beam and the 
moment of inertia

(Young’s Modulus / Elastic modulus)
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Beam Bending – Cantilever Beam Example

P
v(x)

L  x @  v(x) =

y

x

A beam with constant cross section of length L with load P at one end
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• Use method of sections to determine internal moment as a function of distance x along beam

• Recast to get deformation v as a function of moment and ultimately load

• Integrate to get slope of deformation
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• Integrate to get deformation

Displacement at x = 0 is 0 (fixed cantilever 
boundary condition) so C2 = 0
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Moment of Inertia for a Rectangular Section
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• You don’t need to know this derivation 
for this class. In practice you can look up 
moment of inertia (I) for many cross-
sections

• You do need to know the implications of the result and be 
able to apply them

• The further material is away from the neutral axis of a beam, 
the more dramatically it increases the moment of inertia

• Higher moment of inertia – higher stiffness, lower 
deformation, lower stress under the same load conditions
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• Definition of moment of inertia 
for an arbitrary cross section

• Integral evaluated for a rectangular cross-section

Axis of bending
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Failure – Euler Stability Criterion

P Pcr
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• Euler Buckling Formula – Consider a beam under compression from a load P.  At some 
critical load, the beam will buckle, taking on a deformed shape.  Criteria derived from 
constitutive equations by assuming a deformed shape with P a parameter, then solving for P

L

v(x)

• Moment at any location on beam is a 
function of load and moment arm v

• We also have an expression for moment in 
terms of deformation and beam properties

• Equating them, we can develop a 
second order differential  equation 
for v with a possible solution made 
of a sine and cosine

• For the example of the pinned-pinned beam
above, apply the boundary conditions to
determine constants

• Rearrange to get critical load

• Other boundary conditions yield other
criteria generalized with “effective length”
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Terminology: Directions and Deformations

 Why are you using both x,y,z and u,v,w?  That’s confusing!

 Directions are in x,y,z, and never change

 Deformations in the x,y,z directions are described by u,v,w

 Examples:
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The point we can describe as 
at x = Lo on the undeformed 
beam moved u = ΔL in the x 
direction. 

The point we can describe as 
at x = Lo on the undeformed 
beam moved v = vmax in the y 
direction
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Statically Determinate and Indeterminate 

 A structure is Statically Determinate when static equilibrium 
force equations (Σ moments = 0, Σ forces = 0) are sufficient to 
solve for all external reaction forces and internal forces, i.e. the 
number of static equilibrium equations you can formulate = the 
number of external reaction forces

 A structure is Statically Indeterminate when material properties 
and/or equality of deformations segments in the structure must 
be considered to determine all external reaction forces and 
internal forces
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