Structures — Supplemental Notes

e Following Slides Derive Beam Bending Formulas Used in Hmwk, Tests
— Blue boxes: formulas you will apply
— Dashed blue boxes: intermediate results that will be applied later
— Unboxed: steps you are not responsible for in this class

e General Results are Applied to a Canonical Cantilever Beam

e Final Slide Clarifies Symbols for Directions vs Deformations
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Beam Bending — Strain Geometry

—

For any way a beam is being bent, for

any number of external forces (P) ... %—/\XPZ/
n o,

1

You can examine a small slice of it and
make basic geometric observations unlo oadet

e There is an instantaneous radius of curvature (R)

e |nitially, the slice has the same length everywhere yT

e After it deforms, the slice has the same length only at
the center (the neutral axis). Above and below it ; .
becomes longer and shorter. 4

» Mathematically, we can find strain (€) as a function of il
position in the beam (y) and radius of curvature (R). [

3 Y 7

[ LAL_L-l, _(R+y)dg—Rdg_y
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Beam Bending — More Geometry

e Terrific, but knowing R at a particular y
point isn't a good way of describing the ‘
deformed beam shape. X

e Instead we want to know the
deformation v in the y direction as a
function of x position on the beam.

With math tricks that you don’t need to
know for this class, you can relate v to R

e From the length of a circle segment we can get

1 Az dr
R-A7=As —=—=—
= R As ds : - :
» The slope of the neutral axis can be described and2 Z\s
manipulated to get p _d'v o
V 2 AN
tan( A7) =—ﬂ=—ﬂ-}Ar = —arctan(—) =) g7 __dx ool
AX  dx dx dv,, -
1+ (=) Vi
dx Pid
e Finall ' Iff jall Il hs...
inally, assumlngddl erentle:j y gma engths I_l_l d - —dZ\ZI - az_'
2 2 ) _s: 14 _y '_l: Z': G X: dx :|__V|
ds* = dy +dx-}dx \/ dx :Rl ds dxds o : : dx2: M
-— (1_'_( 2 e . T
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Beam Bending — Stress and Forces

* If there is stress (0) acting in the cross- A = Area over which stress acts
section, it causes a moment around the o = distange o SNV y
neutral axis of the beam S e
M = Fd = cAd
. X
e The integral of the moment from stress
over the whole area of the cross-section is M, = j odAy
the total moment acting at the x location
where the cross-section was sliced
Using our previous results we relate moment and beam deflection (v)
Moo = IgEydA & - Stress/Strain relationship o = é% And we can manipulate this
(Young’s Modulus / Elastic modulus) tO yI6|d
M beam = J. l Eyd A =@« Strain from curved geometry € = E o M b(laamy
A
dv 1 d?v :
M peam j y — EydA &+ Deflection geometry —=——— A very useful way of assessing
dx’ R dx ; :
A stress if we know the internal
M,... d 9Ve j 2dA = - Constants out of the integral moment of the beam and the
oot X _ A moment of inertia
2
'M — _dv El 1 @ - Define moment of inertia | = j y*dA Pt
S > G A La
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Beam Bending — Cantilever Beam Example

A beam with constant cross section of length L with load P at one end
y
L » Use method of sections to determine internal moment as a function of distance x along beam
X

/]
y M V(shear force)
: y ——
] ] L—X g
v(X) @X=L i .

|

v

Mbeam(x) o P(L R X)

e Recast to get deformation v as a function of moment and ultimately load

d*v dv. M,.,, P(L-x)
|vlbeam:_—zEI 2 — =

dx dx El El
« Integrate to get slope of deformation
dv

:J)idZV:_ P I(L—X):—E_LX—LZ +C Slope at x = 0 is 0 (fixed cantilever
dx gdx*  Ely El| 2

1 boundary condition) so C1 =0

« Integrate to get deformation
2 1 W2 3
. ¢ dv I ( |:L X } P|Lx® X } C Displacement at x = 0 is 0 (fixed cantilever
2

boundary condition) so C2 =0

Jax T Bl 2|7 EIl 2 6
: : . PL®
Maximum deformation occurs at the end of the beam and is Vil =736 s
1 M
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Moment of Inertia for a Rectangular Section

e You don’t need to know this derivation
for this class. In practice you can look up
moment of inertia (1) for many cross-

sections
Axis of b

* Definition of moment of inertia | = J‘ 24 A
for an arbitrary cross section =]y

« Integral evaluated for a rectangular cross-section

b h
dydx=[ 2Xdx=[ —+——dx=| ——dx=
Yo !23 J 24 24 4 ioF N

O'—;U
N | T

|
N |

e You do need to know the implications of the result and be

able to apply them
e The further material is away from the neutral axis of a beam

the more dramatically it increases the moment of inertia

e Higher moment of inertia — higher stiffness, lower

deformation, lower stress under the same load conditions
11 .
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Failure — Euler Stability Criterion

e Euler Buckling Formula — Consider a beam under compression from a load P. At some
critical load, the beam will buckle, taking on a deformed shape. Criteria derived from
constitutive equations by assuming a deformed shap(}a/ with P a parameter, then solving for P

e Moment at any location on beam is a | & ]
function of load and moment arm v M beam Pc”“ca' V(X)
. . d?v
* We also have an expression for moment in M — iy
terms of deformation and beam properties beagy dx?
e Equating them, we can develop a 2 ! = »
second order differential equation d’v — Periica v v=C;sin( MX) +C, cos( MX)
for v with a possible solution made  dx> El El El

of a sine and cosine

] P_.. P_..
« For the example of the pinned-pinned beam V(0) =0=C,sin( %’ICE"O)JFCZ cos( %'IC"’"O) =C,=C,=0
above, apply the boundary conditions to

determine constants v(L) =0 =C, sin( \/ Peitice 1) \/ Puritcal | _ 1y
El El
e Rearrange to get critical load 2
Nz
e Other boundary conditions yield other I:)critical = El T
criteria generalized with “effective length” ; . 1
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Terminology: Directions and Deformations

e Why are you using both x,y,z and u,v,w? That’s confusing!
e Directions are in x,y,z, and never change

e Deformations in the x,y,z directions are described by u,v,w

e Examples: . _ _
e 0 . The point we can describe as
AL du y at x = L, on the undeformed
&= L dx - beam moved u = AL in the X
0 by H direction.
> X AL
P32 1. Lo ) The point we can describe as

max direction
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Statically Determinate and Indeterminate

e A structure is Statically Determinate when static equilibrium
force equations (£ moments = 0, Z forces = 0) are sufficient to
solve for all external reaction forces and internal forces, I.e. the
number of static equilibrium equations you can formulate = the
number of external reaction forces

e A structure is Statically Indeterminate when material properties
and/or equality of deformations segments in the structure must

be considered to determine all external reaction forces and
Internal forces

t

Space Systems — Structures and Materials: M. Hicks, Santa Clara University Sl?n‘ta Gl_atl;a
9 niversi



	Structures – Supplemental Notes
	Beam Bending – Strain Geometry
	Beam Bending – More Geometry
	Beam Bending – Stress and Forces
	Beam Bending – Cantilever Beam Example
	Moment of Inertia for a Rectangular Section
	Failure – Euler Stability Criterion
	Terminology: Directions and Deformations
	Statically Determinate and Indeterminate 

